DYAL SINGH COLLEGE, KARNAL

 Lesson Plan (2023-24) ODD Semester
Class: B.Phy.Sc. Sem 1

Subject: Mathematics
Paper: Calculus
Course Code: B23- MAT101

Week 1 (July 24-29)	Not for PG
Week 2 (August 1-5)	$\varepsilon-\delta$ definition of limit and continuity of a real valued function, Basic properties of limits,
Week 3 (August 7-12)	Types of discontinuities, Differentiability of functions, Application of L'Hospital rule to indeterminate forms,
Week 4 (August 14-18)	Successive differentiation
Week 5 (August 21-26)	Leibnitz theorem. Taylor's and Maclaurin's series expansion with different forms of remainder.
Week 6 (August 28-September 2)	Asymptotes: Horizontal, vertical
Week 7 (September 4-9)	oblique asymptotes for algebraic curves, Asymptotes for polar curves
Week 8 (September 11-16)	Intersection of a curve and its asymptotes
Week 9 (September 18-22)	Curvature and radius of curvature of curves (cartesian, parametric, polar \& intrinsic forms)
Week 10 (September 25-30)	Newton's method, Centre of curvature and circle of curvature
Week 11 (October 3-7)	Multiple points, Node, Cusp, Conjugate point, Tests for concavity and convexity. Points of inflexion
Week 12 (October 9-14)	Tracing of curves, Reduction formulae. Rectification,
Week 13 (October 16-21)	intrinsic equation of a curve. Quadrature.
Week 14 (October 23-31)	Area bounded by closed curves, Volumes and surfaces of solids of revolution.
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Sessional MDC
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision of syllabus
Week 18 (November 28-December 2)	PG only
Week 19 (December 4-6)	PG only

DYAL SINGH COLLEGE, KARNAL
 Lesson Plan (2023-24) EVEN Semester

Class: B.Phy. Sciences $\mathbf{2}^{\text {nd }}$ Sem.
Subject: mathematics
Course/Paper: Algebra and Number Theory
Course Code: B23-MAT-201

Week 1 (January 1-6)	Symmetric, Skew symmetric, Hermitian and skew Hermitian matrices, Elementary operations on matrices,
Week 2 (January 8-13)	Rank of a matrix, Inverse of a matrix, Linear dependence and independence of rows and columns of matrix,
Week 3 (January 15-20)	Row rank and column rank of a matrix, Eigen values, Eigen vectors and characteristic equation of a matrix
Week 4 (January 22-27)	Minimal polynomial of a matrix, Cayley-Hamilton theorem and its use in finding the inverse of a matrix
Week 5 (January 29-February 3)	Unitary and orthogonal matrices. Relations between the roots and coefficients of general polynomial equation in one variable,
Week 6(February 5-10)	Solutions of polynomial equations having conditions on roots,Common roots and multiple roots,
Week 7 (February 12-17)	Transformation of equations Nature of the roots of an equation
Week 8 (February 19-23)	Descarte's rule of signs Solutions of cubic equations (Cardon's method)
Week 9 (February 26 March 2)	Biquadratic equations and their solutions. Divisibility,
Week 10 (March 4-9)	Greatest common divisor (gcd), Least common multiple (lcm), Prime numbers,
Week 11 (March 11-16)	Fundamental theorem of arithmetic. Linear congruences,
Week 12 (March 18-22)	Fermat's theorem ,Euler's theorem, Wilson's theorem and its converse,
Week 13 (March 23-31)	Holi Break
Week 14 (April 1-6)	Chinese Remainder theorem
Week 15 (April 8-13)	Linear Diophantine equations in two variables.
Week 16 (April 15-20)	Revision of syllabus
Week 17 (April 22-30)	Revision of syllabus

DYAL SINGH COLLEGE, KARNAL
 Lesson Plan (2023-24) ODD Semester

Class: B.Com. First Sem
Subject: Mathematics
Course/Paper: Business Mathematics-1
Course Code: B23-COM-104

Week 1 (July 24-29)	Not for PG
Week 2 (August 1-5)	Set Theory: Representation of sets, equivalent sets, power set, complement of a set. Venn Diagrams: Union and intersection of sets, De-Morgan's laws;
Week 3 (August 7-12)	Logical statements and truth tables
Week 4 (August 14-18)	Logarithms: Laws of operation
Week 5 (August 21-26)	log tables.
Week 6 (August 28- September 2)	Arithmetic progression
Week 7 (September 4 -9)	Geometric progression
Week 8 (September 11-16)	Matrices and Determinants: Definition of a matrix, order, equality, types of matrices; Operations on matrices:
Week 9 (September 18-22)	Addition, multiplication and multiplication with a scalar and their simple properties. Determinant of a square matrix (upto 3x 3 order):
Week 10 (September 25-30)	Properties of determinants, minors, co-factors and applications of determinants in finding the area of triangle
Week 11 (October 3-7)	adjoint and inverse of a square matrix,
Week 12 (October 9-14)	solutions of a system of linear equations by examples. Compound interest and annuities.
Week 13 (October 16-21)	Different types of interest rates, types of annuities,
Week 14 (October 23-31)	present value and amount of an annuity (including the case of continuous compounding). valuation of simple loans and debentures,
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Sessional MDC
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	problems related to sinking funds
Week 18 (November 28- December 2)	PG only Week 19 (December 4-6)

DYAL SINGH COLLEGE, KARNAL
 Lesson Plan (2023-24) EVEN Semester

Class: B.Com. 2nd Sem
Subject: Mathematics
Course/Paper: Business Mathematics-II
Course Code : B23-COM-204

Week 1 (January 1-6)	Differentiation; derivative of simple functions and other functions (excluding trigonometric functions) having applications in business studies;
Week 2 (January 8-13)	Maxima and minima of Revenue
Week 3 (January 15-20)	Cost, Demand, Production, Profit functions and other functions related to business and commerce.
Week 4 (January 22-27)	Integration: Definite and indefinite (simple functions excluding trigonometric functions),
Week 5 (January 29- February 3)	basic rules of integration, application of integration in commercial and business problems.
Week 6 (February 5-10)	Binomial Theorem
Week 7 (February 12-17)	Permutations
Week 8 (February 19-23)	Combinations
Week 9 (February 26 March 2)	Linear programming: Formulation of linear programming problems (LPP)
Week 10 (March 4-9)	solution of linear programming problems (LPP) by graphical method
Week 11 (March 11-16)	solution of linear programming problems (LPP) by graphical method
Week 12 (March 18-22)	solution of linear programming problems (LPP) by simplex method
Week 13 (March 23-31)	Holi Break
Week 14 (April 1-6)	solution of linear programming problems (LPP) by simplex method
Week 15 (April 8-13)	Applications of linear programming in solving problems related to business and commerce.
Week 16 (April 15-20)	Applications of linear programming in solving problems related to business and commerce.
Reek 17 (April 22- 30)	Revision of syllabus

	DYAL SINGH COLLEGE, KARNAL
	BCA Lesson Plan for FIRST Semester
	Mathematical Foundations - I (B23-CAP-104)
Week 1 (July 24-29)	Sets and their representations, Empty set, Finite and infinite sets, Subsets, Equal sets
Week 2 (August 1-5)	Power sets, Universal set, Union and intersection of sets, Difference of two sets, Complement of a set, Venn diagram, De-Morgan's laws and their applications.
Week 3 (August 7- 12)	An introduction to matrices and their types, Operations on matrices, Symmetric and skew-symmetric matrices, Minors, Co-factors
Week 4 (August 1418)	Determinant of a square matrix, Adjoint and inverse of a square matrix,
Week 5 (August 21- 26)	Solutions of a system of linear equations up to order 3.
Week 6 (August 28September 2)	Quadratic equations, Solution of quadratic equations. Arithmetic progression,
Week 7 (September 4 -9)	Geometric progression, Harmonic progression,
Week 8 (September 11-16)	Arithmetic mean (A.M.),
Week 9 (September 18-22)	Geometric mean (G.M.),
Week 10 (September 25-30)	Harmonic mean (H.M.),
Week 11 (October 37)	Relation between A.M., G.M. and H.M.
Week 12 (October 914)	The concept of differentiation, differentiation of simple functions
Week 13 (October 16 -21)	Use of differentiation for solving problems related to real-life situations
Week 14 (October 23- 31)	Differentiation of simple algebraic, trigonometric and exponential functions
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Sessional MDC
November 18	Revision / Distribution of sessional exams answer sheets
$\begin{aligned} & \text { Week } 17 \text { (November } \\ & 20-24 \text {) } \\ & \hline \end{aligned}$	Revision and discussion.

	Lesson plan for ODD Sem (2023-24)
	B.A/B.Sc- Ilnd Year (Semester-III)
	BM-231 Advanced Calculus
Week 1 (July 24-29)	Continuity, Sequential Continuity, properties of continuous functions, Uniform continuity
Week 2 (August 1- 5)	Chain rule of differentiability, Mean value theorems
Week 3 (August 7- 12)	Rolle's Theorem and Lagrange's mean value theorem and their geometrical interpretations.
Week 4 (August 1418)	Taylor's Theorem with various forms of remainders, Darboux intermediate value theorem for derivatives
$\begin{aligned} & \text { Week } 5 \text { (August 21- } \\ & 26 \text {) } \end{aligned}$	Indeterminate forms.
Week 6 (August 28September 2)	Limit and continuity of real valued functions of two variables. Partial differentiation, Total Differentials; Composite functions \& implicit functions
Week 7 (September 4-9)	Change of variables, Homogenous functions \& Euler's theorem on homogeneous functions.
Week 8 (September 11-16)	Differentiability of real valued functions of two variables. Schwarz and Young's theorem
Week 9 (September 18-22)	Implicit function theorem. Maxima, Minima and saddle points of two variables
Week 10 (September $25-30)$	Lagrange's method of multipliers.
Week 11 (October 37)	Curves: Tangents, Principal normal, Binomals, SerretFrenet formulae. Locus of the centre of curvature
Week 12 (October 9- 14)	Spherical curvature, Locus of centre of Spherical curvature,
Week 13 (October 16-21)	Involutes, evolutes, Bertrand Curves.
Week 14 (October 23-31)	Surfaces: Tangent planes, one parameter family of surfaces, Envelopes
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Revision
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision and Discussion

	B.A./B.Sc.- 2nd Year (Semester3) BM - 232 : Partial Differential Equation
Week 1 (July 24-29)	Formation, order and degree of partial differential equation
Week 2 (August 15)	Linear and Non-Linear Partial Differential Equation
Week 3 (August 712)	Complete solution, singular solution
Week 4 (August 1418)	General solution, Solution of Lagrange's linear equations,
Week 5 (August 21 26)	Charpit's general method of solution, Compatible systems of first order equations, Jacobi's method.
Week 6 (August 28 September 2)	Linear partial differential equations of second and higher orders,
$\begin{aligned} & \text { Week } 7 \text { (September } \\ & 4-9) \end{aligned}$	Linear and non-linear homogeneous and nonhomogeneous equations with constant coefficients, Partial differential equation with variable coefficients reducible to equations with constant coefficients, their complimentary functions and particular Integrals
Week 8 (September 11-16)	Equations reducible to linear equations with constant coefficients.
Week 9 (September 18-22)	Classification of linear partial differential equations of second order, Hyperbolic,
Week 10 (Septembe 25-30)	Classification of linear partial differential equations of second order, parabolic and elliptic types
Week 11 (October 37)	Solution of linear hyperbolic equations, Monge's method for partial differential equations of second order.
Week 12 (October 914)	Cauchy's problem for second order partial differential equations, Characteristic equations and characteristic curves of second order partial differential equation
Week 13 (October 16-21)	Method of separation of variables: Solution of Laplace's equation, wave equation
Week 14 (October 23-31)	Diffusion (Heat) equation (one and two dimension)
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Revision
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision and Discussion

	$\begin{aligned} & \text { B.A./B.Sc.- 2nd Year (Semester3) } \\ & \text { BM - } 233 \text { : Statics } \end{aligned}$
Week 1 (July 24-29)	Composition and resolution of forces
Week 2 (August 15)	Parallel forces
Week 3 (August 7- 12)	Moments
Week 4 (August 1418)	Couples.
Week 5 (August 2126)	Analytical conditions of equilibrium of coplanar forces.
Week 6 (August 28September 2)	Friction.
```Week 7 (September```	Centre of Gravity.
Week 8 (September 11-16)	Virtual work.
Week 9 (September 18-22)	Forces in three dimensions.
Week 10 (September 25-30)	Poinsots central axis.
Week 11 (October 3-   7)	Wrenches.
Week 12 (October 9-   14)	Null lines and planes.
Week 13 (October 16-21)	Null lines and planes.
Week 14 (October 23-31)	Stable and unstable equilibrium
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Revision
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision and Discussion
	B.A./B.Sc.3rd Year (Semester 5th) BM - 351 : Real Analysis
Week 1 ( July 24-29)	Riemann integral
Week 2 ( August 15)	Integrabililty of continuous and monotonic functions
Week 3 ( August 7-   12)	The Fundamental theorem of integral calculus. Mean value theorems of integral calculus.
Week 4 ( August 1418)	Improper integrals and their convergence
Week 5 ( August 2126)	Abel's and Dirichlet's tests,
Week 6 ( August 28September 2)	Frullani's integral, Integral as a function of a parameter


Week 7 (September (4-9)	Differentiability and integrability of an integral of a function of a parameter.
Week 8 (September (11-16)	Definition and examples of metric spaces, neighborhoods, limit points
Week 9 (September 18-22)	Interior points, open and closed sets,
Week 10 (September (25-30)	rClosure and interior, boundary points, subspace of a metric space,
Week 11 (October 37)	Equivalent metrics, Cauchy sequences,
Week 12 (October 9-   14)	Completeness, Cantor's intersection theorem, Baire's category theorem, contraction Principle
Week 13 (October 16-21)	Continuous functions, uniform continuity
Week 14 (October 23-31)	Sequential compactness, Bolzano-Weierstrass property, continuity in relation with connectedness
Week 15 (November 2-9)	Sessional Exams
Week 16 (November $10-16)$	Diwali Break
November 17	Revision
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision and Discussion
	B.A./B.Sc.3rd Year (Semester 5th) BM - 352 : Groups and Rings
Week 1 ( July 24-29)	Definition of a group with example and simple properties of groups
Week 2 ( August 15)	Subgroups and Subgroup criteria
Week 3 ( August 7- 12)	Generation of groups, cyclic groups,
Week 4 ( August 1418)	Cosets, Left and right cosets, Index of a sub-group
$\text { Week } 5 \text { ( August 21- }$ 26)	Coset decomposition, Langrange's theorem and its consequences,
Week 6 ( August 28September 2)	Normal subgroups, Quotient groups,
$\begin{aligned} & \text { Week } 7 \text { (September } \\ & 4-9) \end{aligned}$	Homomorphisms, isomophisms
Week 8 (September (11-16)	Automorphisms and inner automorphisms of a group
Week 9 (September (18-22)	Automorphisms of cyclic groups,
Week 10 (September 25-30)	rPermutations groups, Even and odd permutations, Alternating groups
Week 11 (October 3-   7)	Cayley's theorem, Center of a group and derived group of a group.


Week 12 (October 9-   14)	Introduction to rings, subrings, integral domains and fields,
Week 13 (October (16-21)	Characteristics of a ring. Ring homomorphisms, ideals
Week 14 (October 23-31)	Euclidean rings, Polynomial rings, Polynomials over the rational field, Unique factorization domain, R unique factorization domain implies so is $\mathrm{R}[\mathrm{X} 1, \mathrm{X} 2 \ldots . . . \mathrm{Xn}]$
Week 15 (November (2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Revision
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision and Discussion
	B.A./B.Sc.3rd Year (Semester 5th) BM - $\mathbf{3 5 3}$ : Numerical Analysis
Week 1 ( July 24-29)	Finite Differences operators and their relations. Finding the missing terms and effect of error in a difference tabular values
Week 2 ( August 15)	Interpolation with equal intervals: Newton's forward and Newton's backward interpolation formulae.
Week 3 ( August 7- 12)	Interpolation with unequal intervals: Newton's divided difference
$\begin{aligned} & \text { Week } 4 \text { ( August 14- } \\ & \text { 18) } \\ & \hline \end{aligned}$	Lagrange's Interpolation formulae, Hermite Formula.
Week 5 ( August 21-   26)	Central Differences: Gauss forward and Gauss's backward interpolation formulae, Sterling, Bessel Formula.
Week 6 ( August 28 September 2)	Probability distribution of random variables, Binomial distribution,
Week 7 (September 4-9)	Poisson's distribution, Normal distribution: Mean, Variance and Fitting.
Week 8 (September 11-16)	Numerical Differentiation: Derivative of a function using interpolation formulae as studied in Sections -I \& II.
Week 9 (September 18-22)	Eigen Value Problems: Power method, Jacobi's method, Given's method, Householder's method, QR method, Lanczos method.
Week 10 (Septembe 25-30)	Numerical Integration: Newton-Cote's Quadrature formula, Trapezoidal rule, Simpson's one- third and three-eighth rule
Week 11 (October 3-   7)	Single step methods, Picard's method. Taylor's series method, Euler's method, Runge-Kutta Methods.
Week 12 (October 9 14)	Multiple step methods; Predictor-corrector method,
Week 13 (October 16-21)	Modified Euler's method,


Week 14 (October 23-31)	Milne-Simpson's method
Week 15 (November 2-9)	Sessional Exams
Week 16 (November 10-16)	Diwali Break
November 17	Revision
November 18	Revision / Distribution of sessional exams answer sheets
Week 17 (November 20-24)	Revision and Discussion
	Lesson plan for Even Sem (2023-24)
	B.A. /B.Sc. - IInd Year (Semester - IV) BM -241 : SEQUENCES AND SERIES
Week 1 ( January 1-   6)	Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set,
Week 2 ( January 813)	Neighborhoods, interior points, isolated points, limit points
Week 3 ( January 15-20)	Open sets, closed set, interior of a set, closure of a set in real numbers and their properties.
Week 4 ( January 22   27)	Bolzano- Weiestrass theorem, Open covers, Compact sets and Heine-Borel Theorem
Week 5 (January 29February 3)	Sequence: Real Sequences and their convergence,
Week 6 ( February 5-10)	Theorem on limits of sequence, Bounded and monotonic sequences, Cauchy's sequence,
Week 7 ( February 12-17)	Cauchy general principle of convergence, Subsequences, Subsequential limits. Infinite series: Convergence and divergence of
Week 8 ( February 19-23)	Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series
Week 9 ( February 26 March 2)	Cauchy' s general principle of Convergence of series, Convergence and divergence of geometric series,
Week 10 (March 4-9)	Infinite series: D-Alembert's ratio test, Raabe's test,
$\begin{aligned} & \text { Week } 11 \text { (March 11- } \\ & 16 \text { ) } \\ & \hline \end{aligned}$	Logarithmic test, De Morgan and Bertrand's test,
Week 12 (March 18-   22)	Cauchy's Nth root test, Gauss Test, Cauchy's integral test, Cauchy's condensation test, Alternating series, Leibnitz's test, absolute and conditional convergence,
Week 13 ( March 23-   31)	Holi Break
Week 14 (April 1-6)	Insertion and removal of parenthesis, Dirichlet's theorem,
Week 15 (April 8-13)	Riemann's Re-arrangement theorem, Pringsheim's theorem


Week 16 (April 1520)	Revision
Week 17 (April 22-   30)	Test
	B.A./B.Sc. 2ndYear (Semester 4th) BM -242:Special Functions and Integral Transforms
Week 1 ( January 1-   6)	Power series method
Week 2 ( January 8- 13)	Definitions of Beta and Gamma functions. Bessel equation and its solution
Week 3 ( January 15-20)	Convergence, recurrence, Relations and generating functions, Orthogonality of Bessel functions.
Week 4 ( January 22-   27)	Legendre and Hermite differentials equations and their solutions
Week 5 (January 29February 3)	Legendre and Hermite functions and their propertiesRecurrence Relations and generating functions
Week 6 ( February (5-10)	Orhogonality of Legendre and Hermite polynomials. Rodrigues' Formula for Legendre \& Hermite Polynomials,
Week 7 ( February 12-17)	Laplace Integral Representation of Legendre polynomial.
Week 8 ( February 19-23)	Laplace Transforms - Existence theorem for Laplace transforms,
Week 9 ( February 26 March 2)	Shifting theorems, Laplace transforms of derivatives and integrals,
Week 10 (March 4-9)	Convolution theorem, Inverse Laplace transforms, convolution theorem
Week 11 (March 11-   16)	Inverse Laplace transforms of derivatives and integrals,
Week 12 (March 18-   22)	Fourier transforms: Linearity property, Shifting, Modulation, Convolution, Fourier Transform of Derivatives,
Week 13 ( March 23-   31)	Holi Break
Week 14 (April 1-6)	Relations between Fourier transform and Laplace transform
Week 15 (April 8-13)	Parseval's identity for Fourier transforms,
Week 16 (April 1520)	Revision
Week 17 (April 22-   30)	Unit test



Week 6 ( February $5-10)$	Fourier series for even and odd functions, Half range series, Change of Intervals.
Week 7 ( February 12-17)	Extended Complex Plane, Stereographic projection of complex numbers, c
Week 8 ( February 19-23)	Continuity and differentiability of complex functions, Analytic functions,
Week 9 ( February 26 March 2)	Cauchy-Riemann equations. Harmonic functions.
Week 10 (March 4-9)	Mappings by elementary functions:
Week 11 (March 11- 16)	Translation, rotation, Magnification and Inversion.
Week 12 (March 1822)	Conformal Mappings, Mobius transformations.
Week 13 ( March 23-   31)	Holi Break
Week 14 (April 1-6)	Fixed points, Cross ratio
Week 15 (April 8-13)	Inverse Points and critical mappings, Fixed points, Cross ratio,
Week 16 (April 15- 20)	Revision
Week 17 (April 2230)	Unit test
	B.A./B.Sc. 3rdYear (Semester 6th)
	BM -362 Linear Algebra
Week 1 ( January 1-   6)	Vector spaces, subspaces, Sum and Direct sum of subspaces,
Week 2 ( January 8- 13)	Linear span, Linearly Independent and dependent subsets of a vector space
Week 3 ( January $15-20)$	Finitely generated vector space, Existence theorem for basis of a finitely generated vector space
Week 4 ( January 2227)	Finite dimensional vector spaces, Invariance of the number of elements of bases sets,
Week 5 (January 29February 3)	Dimensions, Quotient space and its dimension.
Week 6 ( February (5-10)	Homomorphism and isomorphism of vector spaces, Linear transformations and linear forms on vector spaces
Week 7 ( February 12-17)	Dual Spaces, Bidual spaces, annihilator of subspaces of finite dimensional vector spaces
Week 8 ( February 19-23)	Null Space, Range space of a linear transformation, Rank and Nullity Theorem
Week 9 ( February 26 March 2)	Minimal Polynomial of a linear transformation, Singular and non-singular linear transformations
Week 10 (March 4-9)	)Matrix of a linear Transformation, Change of basis, Eigen values and Eigen vectors of linear transformations


Week 11 (March 1116)	Inner product spaces, Cauchy-Schwarz inequality
Week 12 (March 18-   22)	Orthogonal vectors, Orthogonal complements, Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector spaces
Week 13 ( March 23 31)	Holi Break
Week 14 (April 1-6)	Unitary linear transformations, Gram-Schmidt Orthogonalization process, Adjoint of a linear transformation
Week 15 (April 8-13)	Unitary linear transformations
Week 16 (April 1520)	Revision
Week 17 (April 2230)	Unit test
	B.A./B.Sc. 3rdYear (Semester 6th)
	BM -363 Dynamics
Week 1 ( January 1-   6)	Velocity and acceleration along radial, transverse
Week 2 ( January 813)	Tangential and normal directions
Week 3 ( January 15-20)	Relative velocity and acceleration.
Week 4 ( January 22 27)	Simple harmonic motion. Elastic strings.
Week 5 (January 29February 3)	Mass, Momentum and Force
Week 6 ( February 5-10)	Newton's laws of motion.
Week 7 ( February 12-17)	Work, Power and Energy.
Week 8 ( February 19-23)	Definitions of Conservative forces and Impulsive forces
Week 9 ( February 26 March 2)	Motion on smooth and rough plane curves
Week 10 (March 4-9)	Projectile motion of a particle in a plane.
Week 11 (March 1116)	Vector angular velocity
Week 12 (March 1822)	General motion of a rigid body, Central Orbits,
Week 13 ( March 23 31)	Holi Break
Week 14 (April 1-6)	Kepler laws of motion
Week 15 (April 8-13)	Motion of a particle in three dimensions.
Week 16 (April 1520)	Revision
Week 17 (April 2230)	Revision



